Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(12): e0246916, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34851965

RESUMO

The COVID-19 pandemic has reintroduced questions regarding the potential risk of SARS-CoV-2 exposure amongst passengers on an aircraft. Quantifying risk with computational fluid dynamics models or contact tracing methods alone is challenging, as experimental results for inflight biological aerosols is lacking. Using fluorescent aerosol tracers and real time optical sensors, coupled with DNA-tagged tracers for aerosol deposition, we executed ground and inflight testing on Boeing 767 and 777 airframes. Analysis here represents tracer particles released from a simulated infected passenger, in multiple rows and seats, to determine the exposure risk via penetration into breathing zones in that row and numerous rows ahead and behind the index case. We present here conclusions from 118 releases of fluorescent tracer particles, with 40+ Instantaneous Biological Analyzer and Collector sensors placed in passenger breathing zones for real-time measurement of simulated virus particle penetration. Results from both airframes showed a minimum reduction of 99.54% of 1 µm aerosols from the index source to the breathing zone of a typical passenger seated directly next to the source. An average 99.97 to 99.98% reduction was measured for the breathing zones tested in the 767 and 777, respectively. Contamination of surfaces from aerosol sources was minimal, and DNA-tagged 3 µm tracer aerosol collection techniques agreed with fluorescent methodologies.


Assuntos
Aeronaves , Simulação por Computador , Corantes Fluorescentes/química , Aerossóis e Gotículas Respiratórios/química , COVID-19/patologia , COVID-19/prevenção & controle , COVID-19/virologia , DNA/química , DNA/metabolismo , Humanos , Máscaras , Microesferas , Aerossóis e Gotículas Respiratórios/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
2.
Electrophoresis ; 29(3): 641-51, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18203249

RESUMO

It is imperative in today's world that harmful airborne or solution-based microbes can be detected quickly and efficiently. Bacillus globigii (Bg) spores are used as a simulant for Bacillus anthracis (Ba) due to their similar shape, size, and cellular makeup. The utility of CE to separate and detect low levels of Bg spore concentrations will be evaluated. To differentiate spores from background particulates, several dyes, including fluorescamine, C-10, NN-127, Red-1c, and indocyanine green (ICG), were utilized as noncovalent labels for proteins on the Bg spore surface, as well as for HSA and homoserine standards. On-column labeling, with dye present in the running buffer, was utilized to obtain greater sensitivity and better separation. CE with LIF detection enables interactions between the dye and spore surface proteins to be observed, with enhanced fluorescence occurring upon binding of the dye to surface protein. Resulting electropherograms showed unique fingerprints for each dye with Bg spores. Migration times were under 10 min for all dye-spore complexes, with net mobilities ranging from 3.5x10(-4) to 6.9x10(-4) cm(2) V(-1) s(-1), and calibration curves yielded correlation coefficients of 0.98 or better for four of the dyes studied.


Assuntos
Bacillus/isolamento & purificação , Eletroforese Capilar/métodos , Esporos Bacterianos/isolamento & purificação , Proteínas de Bactérias/química , Corantes , Ciclobutanos , Fluorescamina , Fluorescência , Corantes Fluorescentes , Verde de Indocianina , Indóis , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...